When is $A \times B$ countable?

Consider the infinite matrix M[i, j] where M[i, j] corresponds to the ordered pair (a_i, b_j) .

Consider the enumeration of the set $A \times B$, given by going down short diagonals (right to left, decreasing):

- ▶ *M*[1,1]
- ► *M*[1,2], *M*[2,1]
- ▶ *M*[1,3], *M*[2,2], *M*[3,1]
- ▶ *M*[1,4], *M*[2,3], *M*[3,2], *M*[4,1]

etc.

Note that every element of $A \times B$ appears at some finite index, and so enumeration defines a bijection between the elements of $A \times B$ and Z^+ .

Hence if A and B are countable, then $A \times B$ is countable.