Proof by contradiction.

If $\mathbb{P}(\mathbb{N})$ is countable, then there is a bijection between $\mathbb{P}(\mathbb{N})$ and \mathbb{N} , and so we can list these sets A_0, A_1, A_2, \ldots

We will write down these sets in a matrix format with entries 0 and 1, where A_i is represented by i^{th} row.

Hence, M[i, j] = 1 if and only if $j \in A_i$.