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Abstract 
 

The study of language acquisition is interesting to several 
fields, such as, cognitive science, linguistics, and artificial in-
telligence. A computer model of language acquisition is par-
ticularly interesting, because it can lead to a cognitive theory 
of language acquisition in the form of a computer program, 
which can be tested. Current computer models of language 
acquisition are inadequate to explain human language acqui-
sition in several aspects, including the interaction with con-
cept development and tolerance of noisy inputs. This paper 
proposes a semantic memory model of language that is con-
sistent with modern grammar theories. A development-based 
language acquisition model  based on discrimination and gen-
eralization is presented. The model suggests some possible 
interactions between concept attainment and language acqui-
sition.  A program based on the acquisition model was im-
plemented in Prolog, and example interactions with the pro-
gram have demonstrated its ability to learn "nonmonotonical-
ly'' from noisy inputs. 

Introduction 

The ability to acquire language is a common and ele-
mentary cognitive ability of humans in the sense that every 
child can learn his native language very early when his 
problem solving ability is still relatively "low''.  Computer 
simulation of human language learning is an interesting 
research area, because it can lead to a cognitive theory of 
language acquisition in the form of a computer program, 
which can be tested. Moreover, building computer pro-
grams for learning natural language is itself an interesting 
area in artificial intelligence. However, despite its im-
portance, relatively little research has been done in com-
puter models of language acquisition, compared with the 
work of language acquisition from other perspectives such 
as linguistics or cognitive science (see for example,  Gel-
man & Byrnes, 1991; Dromi, 1993 among others). Mori-
kawa (1988) offers a thorough survey of computer models 
of language acquisition done before and during the 1980's. 
More detailed reviews of some early individual models can 
be found in McMaster, 1975; Pinker, 1979; and Langley & 
Carbonell, 1987.  Some recent work includes Liu & Soo, 
1993 and Kazman, 1994. 

Current computer models of language acquisition gen-
erally fall into two categories, "theory-based models'' and 
"data-driven models'' (Morikawa, 1988). Theory-based 
models all assume some kind of  linguistic theory. Such 
models include the model  by Berwick and Weinberg 
(1984)  based on transformational grammar and the model 

by Block, based on syntax crystal theory.  They tend to 
use only the surface form of utterances as input data, and 
avoid meaning or semantics. However, these models gen-
erally leave behind the remaining task of accounting for 
the acquisition (or existence ) of the linguistic theory. 

Data-driven models, on the other hand, start with the 
characteristics of early language and consider the empirical 
data from children and include such factors as typical lin-
guistic and nonlinguistic input for children, children's 
knowledge about the real world, and conceptual develop-
ment along with postulated learning rules (Morikawa, 
1988).  In such models, "prior knowledge'' for language 
learning is assumed to be at a minimum, and a general 
cognitive mechanism is seen as accounting for language 
acquisition.. Two typical models are John Anderson's 
ACT* and Siklossy's ZBIE (Anderson, 1983; Siklossy, 
1972). Another example is Selfridge, 1980.  Although 
many such models simulate only the early part of language 
development but not the subsequent parts, they all some-
how imply a certain cognitive mechanism behind human 
language acquisition.  

For example, ZBIE is a program which can accept a set 
of "sentence-meaning'' pairs and learn to generate a sen-
tence with a new meaning accordingly. The "sentence'' is 
simply a string of words; while the "meaning'' is a struc-
tured expression in some functional language, FL. The 
mechanism behind the program is a pattern matcher work-
ing on a set of "translation templates'' (Siklossy, 1972). 
ACT* also accepts a set of "sentence-meaning" pairs and 
learns to generate a sentence from a meaning representa-
tion. But, in contrast to ZBIE where the  "meaning'' is 
intended to be a description of an external "meaning stimu-
lus'' (just like a "speech stimulus''), the "meaning''  in ACT* 
is essentially an "internal meaning representation''.  ACT* 
is a general cognitive architecture based on production 
systems and  symbolic networks. Anderson (1983) has 
demonstrated that language acquisition  can be accom-
plished within ACT* in a way similar to other cognitive  
activities.  

While these data-driven models all suggest some kind of 
explanation of human language acquisition, there are two 
problems with most of them. One is that  the language 
acquisition program only learns from "correct” sentence-
meaning pairs. Specifically, these programs will fail to 
learn, if the "meaning'' is only a partial meaning of the 
"sentence'' in a pair. In other words, the input data are 
supposed to be correct.  The other problem is that the 
acquisition program has not shown how concept develop-
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ment interacts with language learning. Concepts are large-
ly a "primitive notion'' built into  the formalism for mean-
ing representation. But, Clark (1991) and Keil (1991), 
among others, have argued that concept learning interacts 
with word meaning acquisition. 

This paper addresses these two issues and is a step to-
ward answering the following two questions: 

First, what's the relationship between "concept attain-
ment'' and "syntactic category acquisition''? Or, how can 
"concept learning'' help "syntactic category learning'' (and 
vice versa)? 

Second, are "ill-formed pairs'' (i.e. those where the 
"meaning'' is inexact) useful for language learning? 

The paper proposes a new computer model for language 
acquisition. The acquisition model is based on a semantic 
memory model for language acquisition, which is con-
sistent with modern grammar theories. The learning pro-
cess consists of both generalization and discrimination  of 
semantic memory nodes. A program based on the acquisi-
tion  model was implemented in Prolog.  Actual running 
examples of the program have demonstrated its ability to 
learn "nonmonotonically'' from noisy inputs. 

Framing the Language Learning Problem  

 
In order to focus on the study of interaction between 

concept development and language acquisition, we put 
significant constraints on both  the natural language to be 
learned and the "world'' being simulated. The natural lan-
guage being learned contains only simple noun phrases 
(e.g., circle, large square, dark square, etc.), and the 
"world'' is supposed to occupy a simple 2-dimensional 
space with a couple of simple geometric figures of differ-
ent sizes and different colors. Although the natural lan-
guage grammar here is almost trivial and the "world'' is 
very, very limited, it is sufficiently complete to show some 
interesting aspects of any proposed language acquisition 
model. Besides, the learning approaches adopted by the 
program are not limited to  the particular framing of the 
problem presented here, they can be used for a more gen-
eral problem of language learning. We will discuss the 
limitations of the approach later. 

The input to the program is a series of [" noun phrase'', 
"meaning''] pairs, where "noun phrase'' is a simple noun 
phrase and is intended to describe a concept and "mean-
ing'' is a "feature structure''. This is to simulate the input 
that a baby would get when an adult says to him “a large 
triangle”  while pointing to a large triangle block. The 
noun phrase represents the verbal input from the adult; 
while the feature structure represents the perceptual stimu-
lus the baby received from the block. The meaning part 
describes the perceptual stimulus on the level of "features'', 
and thus differs from the representation formalism used in  
most other models.  “[size: 1 , color: RED, edge: 3]” is an 
example of feature structure, representing “a triangle ob-
ject of red color and size 1”. 

The  program is expected to learn both to   comprehend 
natural language and to acquire the concepts described by 
the natural language phrases.  

  

 
 

 

A Semantic Memory Model of Language 

 
We propose the following semantic memory model of 

language. The model provides an integrated representation 
of linguistic and conceptual knowledge. It is essentially a 
forest of trees of syntactic templates with natural language 
words as leaves. Each word is further connected to a con-
cept node (feature structure).  The picture below shows a 
sample model. 

  
     T1 
               / \ 
              /\   \ 
            Tj ... Tk              (Ti is a template)              
           / \ ...      \ 
          W1 W2 ... Wn     (Wi is word) 
           |       |  ...    | 
          C1  C2 ...   Cn     (Ci is concept) 
            
            Concepts 

Nodes and Links 

 
The three kinds of nodes are the concept node, word 

node, and template node. A concept node represents a 
concept and is further connected to some feature structure 
(which itself may be a tree-like network). Concept nodes  
reflect the basic concepts the program has learned so far. 
A word node represents a word in the natural language 
vocabulary. Word nodes reflect the  vocabulary capacity 
the program has learned so far. A template node repre-
sents certain pattern of word combinations. Template 
nodes reflect the grammar rules the program has learned 
so far. 

The three links are the lexicon link, abstraction link, and 
join link. A lexicon link is a link connecting a word with a 
concept. If a word W is linked to a concept C through a 
lexicon link, then W has C as one of its possible meanings. 
Lexicon links represent the language lexicon the program 
has acquired. An abstraction link, or "isa'' link, is a link 
between two syntactic  templates. If T1 is linked to T2 
through an "isa'' link, then T1 can combine with any words 
or pattern with which  T2 can combine.  Abstraction links 
correspond to  grammar rules such as  T2 -> T1 . A join 
link is a link that defines the grammar rules for obtaining a 
new template by joining two existing ones. A join link can 
be classified as one of the set { left-adjunct, left-head, left-
complement, right-adjunct, right-head, right-complement 
}. There are only four possible combinations of join links 
as shown below. No other join link combination is al-
lowed. The relation between join link combinations and  
grammar rules is also given below 

(1). Left adjunction rule 
 
           TEMP 
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           /         \     

left-adjunct  right-head     TEMP ----> TEMP1 TEMP2 

        /                 \                      (left adjunction)  

      TEMP1      TEMP2     

(2). Right adjunction rule 
           TEMP 

           /        \  

  left-head   right-adjunct     TEMP ----> TEMP1 TEMP2 

        /                \                      (right adjunction)  

      TEMP1      TEMP2     
(3). Left complementation rule 

                   TEMP 

               /                \  

left-complement  right-head     TEMP ----> TEMP1 TEMP2 

        /                            \             (left complementation)  

      TEMP1              TEMP2     

(4). Right complementation rule 
         TEMP 

            /           \  

left-head  right-complement       TEMP ----> TEMP1 TEMP2 

      /                      \                      (right complementation)  

     TEMP1       TEMP2     

A snapshot 

The following is a "snapshot'' of the memory model with 
the encoded grammar  and lexical rules given on the right 
side. 

                                                         Rules: 

                TEMP1 

                  /      \                                 TEMP1 -> TEMP2 TEMP3  

L-Adjunct/          \ R-Head                      (left-adjuct rule) 

              /                \                           TEMP2 -> Large  

     TEMP2        TEMP3                     TEMP2 -> Red 

     /  \                   /  \                           TEMP3 -> Square 

    /isa \isa           /isa \ isa                   TEMP3 -> Triangle 

   /        \           /          \                

  Large  Red  Square  Triangle           

   |             |        |            | 

   |lex        |lex   |lex       |lex 

   |             |        |            | 

  FS1     FS2    FS3       FS4 

Connection to modern grammar theories 

One very interesting aspect of the memory model above 
is its connection with Chomsky's universal  grammar theo-
ry (Chomsky, 1981; Cook,1988) and other modern gram-
mar theories such as  Head-driven Phrase Structure 
Grammar (Pollard & Sag, 1994). The major connection is 
the type of rules allowed in the model.  

Most modern grammar theories  have generally  as-
sumed some particular forms of grammar rules (called X-
bar rules). Each grammar category  is  of the form  X, 
X^1, X^2 ... ,  where  X  is a primary category, such as 
noun, adjective, or verb.  Any grammar rule must be of the 
following general  form.[  X^i --> Y X^j ] where  j <= i  
and the order between Y and  X^j  is a "parameter'' deter-
mined by a specific language. The two basic forms of rules 
implied by this are exactly the adjunction rule and the 
complementation rule.  
 1. Adjunction rule 

This rule has the form  X^i --> Y X^i  meaning that Y is 
some modifier of  X^i .  
 2. Complementation rule 

This rule has the form  X^i+1 --> Y X^i  meaning that Y 
is an argument of  X^i . 

 

Explanation of comprehension 

 
Based on this integrated model of semantic representa-

tion, the ability of humans to comprehend language  can be 
explained as follows. 

When receiving a sentence(or phrase) containing words 
W1,...Wk, the  language user searches through the tem-
plate net in a bottom-up way until a template which 
matches the string is found. While searching  the template 
net, the language user simultaneously builds the semantics 
(i.e, the feature structure) of the sentence based on the 
feature structures connected with W1,..., Wk, and the 
links of the relevant templates. 

The semantics is compositional in that the feature struc-
ture of a  combined template (a parent in the tree) can be 
determined  based on the feature structures of the tem-
plates being combined (the daughters in the tree). 

 

Learning based on discrimination and gener-
alization 

Operators on Feature Structures 

Corresponding to the two possible combinations of 
templates, we introduce two operators acting on the fea-
ture structures. One is INST (meaning "Instantiate'') which 
instantiates one feature structure by specifying the value 
of one of its features to be another feature structure. The 
other is ADJU (meaning "Adjunct'') which extends one 
feature structure by including another feature structure as 
its subset. 

 Formally, given two feature structures FS1 and FS2, 
and one feature f of FS1, the operators INST and ADJU 
are defined as follows. 

INST(FS1, f,FS2) =  FS1 [f->FS2]. 
(instantiate FS1 by assigning FS2 to feature f) 
ADJU(FS1,FS2) = FS1 Union FS2  
     (extend FS1 by including FS2) 
 

Starting from some primitive feature values and some 
basic feature structures, a complex feature structure can be 
built based on INST and ADJU. 

Interestingly enough, the feature structures and their 
operator are also similar to the feature structures used in 
some current grammar theories (Pollard & Sag, 1994). 

 

Discrimination and Generalization 

Natural language phrase discrimination 

Each input phrase will be compared with all the phrases 
the program can understand to determine the maximal 
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understandable subphrase of the input. The rest of the in-
put is further processed by the program when possible. 
Feature structure discrimination 

Two feature structures can be compared with each other 
to find their difference. The difference can provide a way 
to modify a feature structure (a concept) already learned 
based on the input feature structure. If one feature struc-
ture is a sub-structure of another, then discrimination can 
also find its complement sub-structure. 
Syntactic template generalization 

If the program is able to understand two sub-phrases, 
but not the whole phrase, the program will generalize such 
combination into a more general combination template. 
The label of the rule will be determined by the relations 
among the feature structures of the whole phrase and the 
sub-phrases. 

The learning process 

Given a "phrase-meaning'' pair (PH,FS), where PH is a 
natural language phrase and FS is a feature structure, the 
program will follow the following learning process. 

 1. Find the longest sub-phrase SUBPH in PH, such that  
PH = [SUBPH] [XX] or PH=[XX] [SUBPH] and 
SUBPH is understandable. Let FS(SUBPH) be the fea-
ture structure for SUBPH. Then, XX is either [] or not. 
If XX is [], then do step 2, otherwise, do step 3. 

 2. Do  feature structure discrimination between 
FS(SUBPH)  and FS, and revise the existing feature 
structures according to the discrimination result. Exit. 

 3. If XX is understandable and its feature structure is 
FS(XX), then go to step 4, otherwise, do the following. 
Discriminate between FS and FS(SUBPH), see if we can 
find a feature structure FS' for XX. If not, go to step 1 
and try other possible phrase discriminations, otherwise, 
use (XX,FS') as input, go to step 1. 

   4. Learn the following new rule. 
NEW-TEMP-> TEMP-OF(XX)  TEMP-OF(SUBPH) 
NEW-TEMP-> TEMP-OF(SUBPH)  TEMP-OF(XX) 
The label of the rule is determined by the relations 
among FS, FS(XX), and FS(SUBPH). Exit. 

 

Examples of Learning Interaction  

In this section, we will give some running examples of 
the program to show the program's learning ability.  

Learning Lexicon and grammar rules 

The following example can show how the program 
learns the lexicon and the grammar rules, which are the 
two core elements of the language ability, in general. 

After following sequence of pairs was given to the 
learning program,  the program was able to understand the 
phrase “large triangle”. 

step Input output 

1 (“square”,[edge(4),size(any),color(any)]) Yes 

2 (“triangle”,[edge(3),size(any),color(any)]) Yes 

3 (“red,square”,[edge(4),color(red)]) Yes 

4 (“red,triangle”,[edge(3),color(red)]) Yes 

5 (“large,square”,[edge(4),size(large)]) yes 

The program learned a lexicon that consists of four words 
“square”, “triangle”, “red”, and “large”. Note that even 
though “red” and “large” individually were not presented 
as input, the program can learn them by making discrimi-
nations between these examples. The program also learned 
a simple grammar rule: Words such as “red” and “large” 
can proceed words such as “square” and “triangle” to form 
a meaningful phrase (noun phrase). After learning these 
examples, the memory is exactly the "snapshot'' given in 
Section 3. When given a new phrase “large triangle”, the 
program can comprehend it as to mean the feature struc-
ture:  

Step Input Output 

6 “large triangle” [edge(3),color(any),size(large)] 

Inferring New Concepts(New Words) 

The following example shows how the program can in-
fer new concepts and new words based on context.  

The input pair sequence is: 

step input Output 

1 (“square”,[edge(4),size(any),color(any)]) Yes 

2 (“red,square”,[edge(4),color(red)]) Yes 

3 (“red,triangle”,[edge(3),color(red)]) Yes 

4 “triangle” [color(any),edge(3)] 

 
After seeing these three examples, the program could un-
derstand the word “triangle” as to mean the feature struc-
ture “[color(any),edge(3)]”. 

In this example, the program first learned the con-
cept/word "square'' from the first pair and then learned 
"red square'' from the second. At this point, the program 
has been able to learn the word "red'' and its meaning (the 
feature "color(red)''). This knowledge is immediately used 
to deduce the meaning of the word "triangle'' (i.e., the 
concept "triangle'') from the third example "red triangle''. 
Had the program not been able to figure out the meaning 
of “red” before seeing the example “red triangle”, it would 
only learn the meaning of the whole phrase “red triangle”, 
but not the meaning of “triangle”.  

Concept Development 

The following example shows the program's ability of 
simulating concept development by revising the feature 
structure of a concept. 

Ste
p 

Input Output 

1 (“triangle”,[edge(3),size(any),color(any)]) Yes 

2 (“red,triangle”,[edge(3),color(red)]) Yes 

3 (“triangle”,[edge(3),height(5)]) Yes 

4 “triangle” ([height(5), 
edge(3), 
size(any), 
color(any)] 

5 (“red,triangle”,[edge(3),color(red),height(3)]

) 

 

yes 

6 “triangle” ([height(any), 

edge(3), 

size(any), 
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color(any)]) 

 
The program first learned "triangle'', "red triangle'' as be-

fore, but, then, it learned another case of "triangle'' with a 
new feature "height(5)''. Thus, it revised the feature struc-
ture for the concept "triangle'' to include the feature 
"height'' but with a wrong value specification. When it 
learned another case of "triangle'' with a different height, it 
finally formed the correct feature structure of the concept. 

Nonmonotonic Learning (Learning with noise) 

This example shows how the program can learn from 
input with some "noise'', that is a pair where the feature 
structure is not an exact meaning representation of the 
phrase. (It may miss some features or contain extra noise 
features). 

 

step Input output 

1 (“square”,[edge(4),size(any),color(red)]) Yes 

2 (“red,square”,[edge(4),color(red),size(small)]) Yes 

3 ? “red” [adjunct(true), 

size(small)] 

4 (“red square”, 

[edge(4),color(red),size(large)]) 

Yes 

5 ? “red” unknown 

6 (“square”,[edge(4),color(blue)]) Yes 

7 (“red,square”,   

[edge(4),color(red),size(large)]) 

Yes 

8 ? “red” [adjunct(true), 

color(red), 

size(large)] 

9 (“red,square”,         
[edge(4),color(red),size(small)]) 

Yes 

10 ? “red” [adjunct(true), 

color(red)] 

 
The program first learned a wrong concept of "square'' 
(with its feature "color'' having to be "red''), thus when it 
learned "red square'', it formed a wrong meaning for "red'' 
(feature "size''). But, when it further learned an example of 
"red square'' with an inconsistent meaning (size is large), it 
realized the inconsistency, and revised the meaning of 
"red'' and cleaned it up because the meaning is empty. 
Now, the program learned another case of "square'' which 
allows it to induce the correct feature structure for the 
concept "square''. But, because of the existence of noise 
feature "size'', when it further learned the case "red 
square'', it formed another wrong meaning of "red'' (both 
"size'' and "color''), then, after learning another case of 
"red square'' with a small size, it finally  formed the correct 
meaning of "red''. 

 

Limitation of the learning program 

One major limitation of the learning program  is its ina-
bility to  learn recursive rules. It is generally agreed  that 
human language is recursive. For instance, in English, it is  
theoretically possible to "stack'' an infinite number of ad-

jectives  as the modifiers of a noun, thus generating a 
phrase like "a red, large, delicious, ..., fresh apple''.  

Obviously, it is impossible for any person to explicitly 
store all such phrases in his memory, hence there must be 
some kind of (recursive) rule like the following. 

<Noun Phrase> :: = <Noun> 
<Noun Phrase> :: = <Adjective> <Noun> 
<Noun> :: = apple 
<Adjective> :: = red | large | delicious |... |fresh|... 
 

However, the learning process  proposed in this paper can 
not   construct such recursive nodes. In order to do this, 
we need to extend the generalization step to allow "col-
lapse'' of  two nodes that have dominance relations (i.e., 
generalization of a parent node and its descendant node).  
Then, we can easily represent such recursive rules in the 
proposed semantic memory by a "cyclic node'' of the fol-
lowing form. 

             __ 
            /    \ 
           NP-/ right-head 
         / 
       / left-adjuct 
   ADJ 
 

But, such a generalization rule implies  more complex 
parsing process,  since a recursive node can cause  infinite 
search. One possible solution to the problem of infinite 
search is to  keep track of the nodes visited at any time. 
This will be an interesting issue for further exploration. 

Conclusions and Future Work 

The paper has proposed a semantic memory model of 
language and an elementary language learning approach 
based on discrimination and generalization. A learning 
program based on the model and approach was imple-
mented in Prolog, and several running examples have been 
given to show diverse abilities of the program. The paper 
suggests a unique approach for computer to learn the abil-
ity of natural language comprehension at an elementary 
level. It also shows the possibility to learn from ill-formed 
phrase-meaning pairs.   

The model provides the following answer to the ques-
tion  "How concept attainment interacts  with language 
acquisition?''. 
  Concepts guide the syntactic discrimination and 

grammar rule formation 
  Linguistic phrases put constraints on the granu-
larity of concepts  

One interesting thing with the language learning pro-
gram is its connection  to modern grammar theories. Both 
the memory model and the feature structures are con-
sistent with several modern grammar theories.  

One important  future work is to study the limit of com-
plexity of language structures learnable in the acquisition 
model of the form currently proposed. One particular in-
teresting work is to study how sentences (not just noun 
phrases) could be learned in the current model (even with-
out recursive extension). There are at least two issues de-
serving investigation here. One is the acquisition of verbs 
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and the complementation rules. This will involve the study 
of more complex concepts (e.g., actions, events) and their 
attainment. The other has to do with more complex noun 
phrases, such as those with quantifiers and prepositional 
phrases.  

Another important future work is to study how to ex-
tend the current model so as to deal with recursive struc-
ture, as mentioned in the  previous section. 

Further exploration of the connection between the pro-
posed language acquisition model and modern grammar 
theories will also be very interesting and promising. It is 
quite possible that many other principles of modern gram-
mar theories will have some implication on the extension 
of the current model or learning process. For example, 
"theta-criteria'' is a principle in GB which essentially says 
that syntactic arguments (roughly maximal noun phrases) 
and the thematic roles of the verb should always match in  
each grammatical sentence (Chomsky, 1981) (Thus not 
allowing sentences like "John liked'', or "John liked kids 
the dogs''). Children seem rarely making such mistakes, 
though they make many other mistakes such as  tense and 
number disagreements (e.g, "he like it''). This proposes the 
question how to acquire configuration of such thematic 
roles of verbs. References 
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