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1 Introduction

In many text collections, we encounter the scenario that a document contains multiple topics. Extracting such top-
ics/subtopics/themes from the text collection is important for many text mining tasks, such as search result organiza-
tion, subtopic retrieval, passage segmentation, document clustering, and contextual text mining.

A well accepted practice is to explain the generation of each document with a probabilistic topic model. In such
a model, every topic is represented by a multinomial distribution on the vocabulary (i.e., a unigram language model).
Correspondingly, such a probabilistic topic model is usually chosen to be a mixture model ofk components, each of
which is a topic.

One of the standard probabilistic topic models is the Probabilistic Latent Semantic Analysis (PLSA), which is also
known as Probabilistic Latent Semantic Indexing (PLSI) when used in information retrieval [3].

The basic idea of PLSA is to treat the words in each document as observations from a mixture model where
the component models are the topic word distributions. The selection of different components are controlled by a
set of mixing weights. Words in the same document share the same mixing weights. We may add a component of
background and use it to explain the non-topical words (functional words) with a background word distribution.

Specifically, letθ1, ..., θk bek topic unigram language models (i.e., word distributions) andθB be a background
model for the whole collectionC. A word w in a documentd is regarded as a sample of the following mixture model
(based on word generation).

pd(w) = λBp(w|θB) + (1− λB)
k∑

j=1

(πd,jp(w|θj)) (1)

wherew is a word in documentd, πd,j is the mixing weight for documentd for choosing thej-th themeθj such
that

∑k
j=1 πd,j = 1, andλB is the mixing weight forθB . The purpose of using a background modelθB is to make the

topic models more discriminative; sinceθB gives high probabilities to non-discriminative and non-informative words,
we expect such words to be accounted for byθB and thus the topic models to be more discriminative.θB is estimated

using the whole collectionC asp(w|θB) =
∑

d∈C
c(w,d)∑

w∈V

∑
d∈C

c(w,d)
. p(w|θB) doesn’t change during the later estimation

procedure.
The additional parameters to estimate areΛ = {θj , πd,j |d ∈ C, 1 ≤ j ≤ k}. The log-likelihood ofC is

log p(C|Λ) =
∑

d∈C

∑

w∈V

[c(w, d)× log(λBp(w|θB) + (1− λB)
k∑

j=1

(πd,jp(w|θj)))] (2)

wherec(w, d) is the count of wordw in documentd.

2 Expectation-Maximization (EM) Algorithm

The model can be estimated using the Expectation Maximization (EM) algorithm [2] to obtain the topic word distri-
butions and the mixing weights.
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The Expectation-Maximization (EM) algorithm is a general algorithm for maximum-likelihood estimation where
the data are incomplete or the likelihood function involves latent variables. Note that the notion of incomplete data and
latent variables are related: when we have a latent variable, we may regard our data as being incomplete since we do
not observe values of the latent variables; similarly, when our data are incomplete, we often can also associate some
latent variable with the missing data. For language modeling, the EM algorithm is often used to estimate parameters
of a mixture model, in which the exact component model from which a data point is generated is hidden from us.
Informally, the EM algorithm starts with randomly assigning values to all the parameters to be estimated. It then
iteratively alternates between two steps, called the expectation step (i.e., the E-step) and the maximization step (i.e.,
the M-step), respectively. In the E-step, it computes the expected likelihood for the complete data (the so-called Q-
function) where the expectation is taken w.r.t. the computed conditional distribution of the latent variables (i.e., the
hidden variables) given the current settings of parameters and our observed (incomplete) data. In the M-step, it re-
estimates all the parameters by maximizing the Q-function. Once we have a new generation of parameter values, we
can repeat the E-step and another M-step. This process continues until the likelihood converges, i.e., reaching a local
maxima. Intuitively, what EM does is to iteratively augment the data by guessing the values of the hidden variables
and to re-estimate the parameters by assuming that the guessed values are the true values. For detailed discussion
about EM algorithm, please refer to the note [7].

3 Maximum Likelihood Estimation (MLE)

In this section, we give an intuitive explanation of the EM algorithm for PLSA, which would give you a basic under-
standing of the model. The basic idea is to estimate the parametersΛ in Section 1 by fitting the data with the model.
The straight forward way is to findΛ which maximizes the data likelihood in Equation 2. This means,

Λ̂ = arg max
Λ

log p(C|Λ)

= arg max
Λ

∑

d∈C

∑

w∈V

[c(w, d)× log(λBp(w|θB) + (1− λB)
k∑

j=1

(πd,jp(w|θj)))] (3)

According to the EM algorithm, we can use the following iterative updating formulas to estimate all the parameters.
Intuitively, if we know the identity of each word in the collection, i.e., which topic (or background) it is generated with,
it is quite easy to estimateΛ. We thus introduce a hidden variable for the identity of each word,{zd,w}. {zd,w} is a
hidden variable andp(zd,w = B) is the probability that the wordw in documentd is generated with the background
distribution.p(zd,w = j) in the following formulae indicates that the wordw in documentd is generated using topic
j given thatw is not generated from the background model. Therefore, it is actually better to writep(zd,w = j) in
the following formulae asp(zd,w = j|zd,w 6= B). To be consistent with [8] and [5], we still usep(zd,w = j) in the
following formulae.

E-Step:

p(zd,w = j) =
π

(n)
d,j p(n)(w|θj)

∑k
j′=1 π

(n)
d,j′p

(n)(w|θj′)
(4)

p(zd,w = B) =
λBp(w|θB)

λBp(w|θB) + (1− λB)
∑k

j=1 π
(n)
d,j p(n)(w|θj)

(5)

M-Step:

π
(n+1)
d,j =

∑
w∈V c(w, d)(1− p(zd,w = B))p(zd,w = j)

∑k
j′=1

∑
w∈V c(w, d)(1− p(zd,w = B))p(zd,w = j′)

(6)

p(n+1)(w|θj) =

∑
d∈Ci

c(w, d)(1− p(zd,w = B))p(zd,w = j)∑
w′∈V

∑
d∈Ci

c(w′, d)(1− p(zd,w′ = B))p(zd,w′ = j)
(7)

In E-Step, we are actually estimating the distribution of the hidden variables (or estimating the identity of each
word). Please note that this estimated identity is “soft”. A word could be splitted into several fractions, each fraction
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is generated from one topic, or background. This distribution is simple to compute: just figure out in the likelihood
of a word, how much proportion is contributed by the background model, or by Topicj if not contributed by the
background.

M-step is essentially aggregating such fractions to estimate a new set of values forΛ. To estimate the newπd,j

(the mixing weights for a document), we just aggregate all the fractions of words generated by Topicj in document
d, and normalize{πd,j}j=1..k to make

∑
j=1...k πd,j = 1 (Equation 6). To estimate the newp(w|θj), think about

how we estimate a language model for a document, where you know the count of every word. Now that we know
the identity of every word in the collection, all word fractions generated by Topicj is now a “pseudo-document” for
Topic j. Equation 7 is essentially aggregating all the fractions of the wordw that are generated by Topicj (over all
documents), and normalize{p(w|θj)}w∈V to make

∑
w∈V p(w|θj) = 1.

Before convergence, every iteration of the EM algorithm will yield a larger likelihood value in Equation 2. The
algorithm will terminate when it achieves a local maximum of the log likelihood. In our experiments, we use multiple
trials to improve the local maximum we obtain, where in each trial we begin with a new starting point ofΛ (by
assigning random values toΛ). We may usêj = arg maxj πd,j to assign a document into thêjth topic, and use∑

d∈C πd,jp(d) = 1
N

∑
d∈C πd,j to compute the coverage of Topicj in collectionC which containsN documents.

Please refer to [7] if you want to deduct the formulae directly from Equation 3.

4 Maximum A Posterior (MAP) Estimation

Maximum Likelihood Estimation is a reasonable choice if we don’t have any prior knowledge about the topic models.
But in many scenarios we do. Indeed, given a topic, a user often has some knowledge about what aspects are inter-
esting. For example, when the user is searching for laptops, we know that he is very likely interested in “price” and
“configuration”. It will be nice if we “guide” the model to enforce two of the topic models to be as close as possible
to the predefined facets. We may want to see “retrieval model” among the topics of information retrieval. Rather than
directly fitting the data with PLSA model, we use such domain knowledge to define a prior on the topic models and
estimate the topic models using the Maximum A Posterior (MAP) estimator. Since the output of topics are language
models, it is natural to also input prior knowledge as language models. Specifically, we may want to inputθ̄j as the
prior topic model for Topicj given by the user.

In Bayesian analysis, the prior1 of a distribution is adistribution of distribution, which indicates your belief of
the parameters of the target distribution. Since our parameters areΛ, we can denote our prior distribution asp(Λ).
Conjugate prior is usually adopted as the prior distribution of the target distribution. The basic idea of a conjugate prior
is that the prior distribution and the posterior distribution are of the same form. The conjugate prior for multinomial
distribution is the Dirichlet distribution2.

We define the following conjugate Dirichlet prior for the topic modelθj : Dir({1 + µp(w|θ̄j)}w∈V ), where the
parametersµ indicate how strong our confidence is on the sentiment model prior.

Since the prior is conjugate,µ can be interpreted as “equivalent sample size”, which means that the impact of
adding the prior would be equivalent to addingµp(w|θ̄j) pseudo counts for wordw when estimating the topic model
p(w|θj). The largerµ is, the closer the estimated topic models would be to the prior language model given by the user.

Therefore, in general, we may assume that the prior on all the parameters in the PLSA model is

p(Λ) ∝
k∏

j=1

p(θj) =
k∏

j=1

∏

w∈V

p(w|θj)µp(w|θ̄j) (8)

whereµ = 0 if we do not have prior knowledge onθj .
With the prior defined above, we may use Bayesian estimation to maximize the posterior probability of parameters,

instead of maximizing the likelihood function as in Equation 3. We may use the MAP estimator instead:

Λ̂ = arg max
Λ

p(C|Λ)p(Λ) (9)

The MAP estimation can be conducted by rewriting the M-step in the original EM algorithm in Section 3 to
incorporate the pseudo counts given by the prior [4]. Please note that we do not introduce prior forπd,j . The only
thing we need to change in the EM algorithm is thus Equation 7. The new M-step updating formula is now:

1http://en.wikipedia.org/wiki/Priorprobability
2http://en.wikipedia.org/wiki/Dirichletdistribution
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p(n+1)(w|θj) =

∑
d∈Ci

c(w, d)(1− p(zd,w = B))p(zd,w = j) + µp(w|θ̄j)∑
w′∈V

∑
d∈Ci

c(w′, d)(1− p(zd,w′ = B))p(zd,w′ = j) + µ
(10)

Understanding Equation 10 isn’t very difficult. Comparing with Equation 7, the difference is that besides the
documents in the collection, we also “observe” a pseudo-document for each topic. The size of such a pseudo-document
is µ, and the distribution of words in the pseudo-documents followsp(w|θ̄j).

The parametersµ is usually empirically set to constants, or be estimated with a regularized estimation [6], which
begins with very largeµ, and then gradually decay theµ in each iteration until they are equal to the real amount of
data generated with the corresponding topic/sentiment models. A detailed discussion can be found in [6].

Please note that we didn’t incorporate priors forπd,w. Can we do this? It is good practice to think about this
possibility and then read the paper [1], which leads to a widely used extension of PLSA, LDA.
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