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Suppose you have a probability model for some data you’ve obtained, but you want to model its
generative process using values that are unobserved. For example, you might assume that you have
words being generated from a two-component mixture model

λp(wi | C) + (1−λ)p(wi | θ )

but you only observe the individual words wi and do not know from which component they were gen-
erated. Thus, you would have a log-likelihood function

log p(D | θ ) =
∑

d∈D

|d|
∑

i=1

log {λp(wi | C) + (1−λ)p(wi | θ )} .

Finding the maximum likelihood estimate for θ analytically is difficult because of the summation inside
of the logarithm, so we are forced to use some sort of numerical algorithm.

The EM algorithm [1] is one such optimization algorithm for solving for maximum-likelihood es-
timates. This note will briefly introduce one particular way of deriving and thinking about the EM
algorithm by looking at it from an coordinate-ascent optimization (maximization-maximization) per-
spective. We first will give a general derivation of the EM algorithm, and then will investigate a few
specific examples where we might leverage the EM algorithm for parameter learning.

1 Maximizing the Marginal Likelihood

Suppose you have a probability model p(X , Z | Θ)where X are observed data and Z are latent variables,
and Θ are the model’s parameters. (For the above case, the latent variables Z would be the indicator
variables zi that tell us from which component word wi was drawn.) We wish to solve the problem

Θ∗ = argmax
Θ

p(X | Θ) = arg max
Θ

log p(X | Θ) = arg max
Θ

log

¨

∑

Z

p(X , Z | Θ)

«

.

This is problematic due to the summation inside the logarithm (which results from having to marginalize
out the hidden1 variables Z), which makes finding an analytical solution for Θ∗ either too difficult or
flat-out impossible.

1Also: “unobserved” or “latent”
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Let’s derive a way to cause the summation to be outside the logarithm rather than within it. We start
with

log p(X | Θ) =
∑

Z

q(Z) log p(X | Θ)

where we suppose that q(Z) is some distribution over the latent variables Z . This may seem strange,
but we can now rewrite this as

log p(X | Θ) =
∑

Z

q(Z) log
p(X , Z | Θ)
p(Z | X ,Θ)

by using the fact that p(X , Z | Θ) = p(X | Θ)p(Z | X ,Θ). This rewriting allows us to avoid having to sum
over all of the latent variable values within the logarithm. Furthermore, we can see from this rewriting
that

log p(X | Θ) =
∑

Z

q(Z) log p(X , Z | Θ) +H(q, p)

where H(q, p) is the cross-entropy between q(Z) and p(Z | X ,Θ). Things may become even more clear
if we add and subtract H(q), the entropy of q(Z):

log p(X | Θ) =
∑

Z

q(Z) log p(X , Z | Θ) +H(q, p)−H(q) +H(q)

=
∑

Z

q(Z) log
p(X , Z | Θ)

q(Z)
+ K L(q || p)

= F(q,Θ) + K L(q || p)

where K L(q || p) is the Kullback-Leibler divergence from p(Z | X ,Θ) to q(Z). Since the KL-divergence
is non-negative2, we have thus established F(q,Θ) to be a lower bound for the marginal log-likelihood
log p(X | Θ). We can now view the EM algorithm as being a coordinate ascent method for maximizing
F(q,Θ) directly, which will in turn maximize log p(X | Θ)3. Specifically, we can view its steps as:

E-Step: Fix Θ(n) and maximize F(q,Θ(n)) with respect to q. Since we treat Θ(n) as fixed, the only term
that varies in F(q,Θ(n)) is the KL-divergence term, which is minimized when q(z) = p(Z | X ,Θ(n)),
which can be solved analytically in most cases. Algorithmically, this would be computing the
probability of the individual latent variable assignments conditioned on the observed data and
the current parameter settings.

In some cases, however, it can be difficult to compute p(Z | X ,Θ(n)) directly, so we can instead
choose q(z) to be from some simpler family of distributions and solve an optimization subproblem
to minimize K L(q || p). In these cases, the algorithm may be referred to as “variational inference”
or “variational EM”, as q(z) is a variational distribution4.

M-Step: Fix q and maximize F(q,Θ(n+1)) with respect to Θ(n+1). Algorithmically, this amounts to re-
estimating the model parameters using the q(Z) distribution and our observations X (for example,
by re-normalizing expected counts computed using q(Z)). This is much easier to do than solving
the original optimization problem directly, as now we can pretend that we have the “complete”
data, including (soft, fractional) latent variable assignments.

2This can be proved using Jensen’s inequality, among other ways.
3In the case that the function has only one maximum, this will guarantee that you arrive at the global maximum. In general,

however, this optimization only guarantees that you arrive at a local maximum, which means that your starting point becomes
quite important.

4Variational inference is a commonly used technique for finding parameters in graphical models, such as LDA.
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2 Deriving the EM Algorithm for Feedback Modeling

Recall that in the mixture model feedback approach from Zhai and Lafferty [3] we assumed that we had
a set of feedback documents D = {d1, . . . , dN}which were generated from a two-component multinomial
mixture model. The parameter λ, which is assumed to be provided in advance and chosen empirically,
represents the probability of a word wi in a document d being generated by the background language
model p(w | C) which is also assumed to be provided in advance and is learned using MLE on the entire
collection of documents C . With probability 1−λ, a word is generated from the distribution p(w | θF ).
We wish to learn the parameters for this distribution.

Our log likelihood function given the above generative process is

log p(D | θF ) =
N
∑

i=1

|di |
∑

j=1

log
�

λp(wi, j | C) + (1−λ)p(wi, j | θF )
	

and we can immediately see the troublesome summation occurring within the logarithm, making find-
ing a simple solution using Lagrange multipliers difficult. We can, however, view our data as being
“incomplete” in that it is missing binary latent variables zi, j that each indicate which distribution the
word wi, j was drawn from. Let’s say zi, j = 0 indicates that the word was drawn from the background
p(wi, j | C) and zi, j = 1 indicates that it was drawn instead from the feedback distribution p(wi, j | θF ).

Let’s write the complete data likelihood, p(D, Z | θF ).

p(D, Z | θF ) = p(D | Z ,θF )P(Z | θF )

=
N
∏

i=1

|di |
∏

j=1

p(wi, j | zi, j ,θF )p(zi, j | θF )

where we have

p(wi, j | zi, j ,θF ) =

¨

p(wi, j | θF ) if zi, j = 1

p(wi, j | C) if zi, j = 0

and

p(zi, j | θF ) =

¨

1−λ if zi, j = 1

λ if zi, j = 0.

This can then be written as

p(D, Z | θF ) =
N
∏

i=1

|di |
∏

j=1

�

λp(wi, j | C)
�1−zi, j

�

(1−λ)p(wi, j | θF )
�zi, j

and thus our complete data log likelihood is

log p(D, Z | θF ) =
N
∑

i=1

|di |
∑

j=1

�

(1− zi, j) log(λp(wi, j | C)) + zi j log((1−λ)p(wi, j | θF ))
�

.

We can now write the lower bound function F(q,θF ) as

F(q,θF ) =
∑

Z

q(Z) log
p(D, Z | θF )

q(Z)

=
N
∑

i=1

|di |
∑

j=1

�

q(zi, j = 0) log(λp(wi, j | C)) + q(zi, j = 1) log((1−λ)p(wi, j | θF ))
�

+H(q)
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With this, we have everything we need to derive an EM algorithm for solving for the maximum
likelihood estimate for θF .

E-step: Since we established earlier that maximizing F(q,θ (n)F ) with θ (n)F fixed means minimizing the

KL-divergence between q(Z) and p(Z | D,θ (n)F ), the main computation here is to compute

p(zi, j = 0 | D,θ (n)F ) =
λp(wi, j | C)

λp(wi, j | C) + (1−λ)p(wi, j | θ
(n)
F )

which can be rationalized using Bayes’ rule. We can then simply let

q(zi, j = 0) = p(zi, j = 0 | D,θ (n)F )

and
q(zi, j = 1) = 1− q(zi, j = 0)

to complete the setting of q to maximize L(q,θ (n)F ).

M-step: Now we need to maximize L(q,θ (n+1)
F ), holding q fixed to the value we computed in the E-step.

We note that the entropy term H(q) is a constant and thus we can ignore it. We can then set about
maximizing the first term in the expression. We can do this analytically by introducing Lagrange
multipliers and taking derivatives with respect to each parameter p(w | θF ).

We could also, however, recognize that the term we are trying to maximize is simply the ex-
pectation of the complete data log likelihood with respect to the distribution q from the E-step.
This observation allows us to consider instead computing “expected counts” of events from our
observed data, using q to distribute each actual count among the uncertainty in Z .

In other words, we can begin by collecting all of the counts in the data for observing a particular
word w. We then distribute these counts, fractionally, into the cases where w was drawn from
the background and into the cases where w was drawn from the feedback distribution θ (n)F by
weighting them by the probability of those two cases based on q.

Let’s let nw,F be the number of times we expect to see word w drawn from the feedback distribution
given our data D and our latent variable distribution q. We can see that

nw,F =
N
∑

i=1

|di |
∑

j=1,di, j=w

q(zi, j = 1) =
∑

d∈D

q(zw = 1)c(w, d).

where we’ve relabeled z to be indexed by w by noting that zi, j depends only on the specific word
type di, j = w.

Since we know how to estimate a multinomial distribution given count data, we can use these
numbers directly to re-estimate our parameters for p(w | θ (n+1)

F ). Specifically, we have

p(w | θ (n+1)
F ) =

nw,F
∑

w′∈V nw′,F
=

∑N
i=1 q(zw = 1)c(w, di)

∑N
i=1

∑

w′∈V q(zw′ = 1)c(w′, di)

which is exactly the same estimate we would arrive at using the Lagrange multiplier approach5.
5You can see this approach worked out in detail here: http://sifaka.cs.uiuc.edu/czhai/pub/em-note.pdf
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3 Deriving the EM Algorithm for PLSA

In the original formulation for PLSA from Hofmann [2], we assume that we have a collection of docu-
ments D = {d1, d2, . . . dN} that are generated by drawing individual words from a set of K topics, which
are multinomial distributions over words in a fixed vocabulary V . Each document di has some distri-
bution πi that is used to first pick one of the K topics, and then a word wi, j is drawn from the topic
distribution θk. With such a generative process, we would have a log likelihood of

log p(D | Π,Θ) =
N
∑

i=1

|di |
∑

j=1

log

¨ K
∑

k=1

p(zi, j = k | πi)p(wi, j | θk)

«

.

We can immediately recognize the same problematic form of the log likelihood function like before—we
have a summation over the different topics occurring within the logarithm. Fortunately, we can turn to
the EM algorithm to help us solve for maximum likelihood estimates for the parameters Π and Θ.

E-step: Again, the main computational challenge here is to compute the distribution over the latent
variables given the current model parameters Π(n) and Θ(n) and the observations. Again by Bayes’
rule, we have

p(zi, j = k | D,Π(n),Θ(n)) =
p(zi, j = k | π(n)i )p(wi, j | θ

(n)
k )

∑K
k′=1 p(zi, j = k′ | π(n)i )p(wi, j | θ

(n)
k′ )

and we simply let q(zi, j = k) = p(zi, j = k | D,Π(n),Θ(n)).

M-step: Given the distribution q over the latent variable assignments, we can now re-estimate the
parameters Π(n+1) and Θ(n+1). We will again take an “expected counts” view. Let nw,k indicate
the number of times we expect to see a word type w assigned to topic k, and let nd,k indicate the
number of times we expect to see a word in d assigned to topic k.

We have

nw,k =
N
∑

i=1

∑

j=1,di, j=w

q(zi, j = k) =
∑

d∈D

c(w, d)q(zd,w = k)

and

nd,k =
|d|
∑

j=1

q(zd, j = k) =
∑

w∈d

c(w, d)q(zd,w = k).

We can then re-estimate our parameters by normalizing these counts. Specifically,

p(w | θ (n+1)
k ) =

nw,k
∑

w′∈V nw′,k
=

∑

d∈D c(w, d)q(zd,w = k)
∑

w′∈V

∑

d∈D c(w′, d)q(zd,w′ = k)

and

p(zd,w = k | π(n+1)
d ) =

nd,k
∑K

k′=1 nd,k′
=

∑

w∈d c(w, d)q(zd,w = k)
∑K

k′=1

∑

w∈d c(w, d)q(zd,w = k′)
.
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4 Deriving the EM Algorithm for a PLSA Mixture Model

In Zhai et al. [4], a modification of the original PLSA model is proposed by suggesting that we view the
generative process for a word as consisting of two main steps. First, with probability λ we generate a
word from the background language model p(w | D) (which is estimated with MLE and is fixed) and
with probability 1−λ we generate the word from the standard PLSA model, where λ is a parameter set
heuristically in advance.

This can be thought of as combining the feedback model with the PLSA model, and we can thus
define two different latent variables in play6. Let yi, j be a binary random variable that, mirroring the
feedback model, indicates whether word occurrence di, j was drawn from the background (yi, j = 0) or
not (yi, j = 1). Then we can let zi, j be an indicator variable that denotes which of the K topics in the
PLSA mixture the word di, j was drawn from, or 0 in the case it was drawn from the background. We
can then define the likelihood of the data D as

p(D | Θ,Π) =
N
∏

i=1

|di |
∏

j=1

1
∑

`=0

K
∑

k=0

p(di, j = w, yi, j = `, zi, j = k | Θ,Π)

=
N
∏

i=1

|di |
∏

j=1

1
∑

`=0

K
∑

k=0

p(yi, j = ` | Θ,Π)p(zi, j = k | yi, j = `,Θ,Π)p(di, j = w | zi, j = k, yi, j = `,Θ,Π)

=

N
∏

i=1

|di |
∏

j=1

�

λ

K
∑

k=0

p(zi, j = k | yi, j = 0,Θ,Π)p(di, j = w | zi, j = k | Θ,Π)

+(1−λ)
K
∑

k=0

p(zi, j = k | yi, j = 1,Θ,Π)p(di, j = w | zi, j = k | Θ,Π)

�

where in the third line we’ve simply expanded out the sum over the uncertainty in yi, j and observed
that p(yi, j | Θ,Π) is conditionally independent of our model parameters (since we are assuming it to
be a parameter specified in advance). We can now simplify this expression by making the observation
that p(zi, j = k | yi, j = 0,Θ,Π) = 0 for k > 0 (since if yi, j = 0 we are guaranteed to draw from the
background). Similarly, p(zi, j = 0 | yi, j = 1,Θ,Π) = 0 since if yi, j = 1 we are forced to draw from one
of the K topics from the PLSA mixture. Thus, we have

p(D | Θ,Π) =
N
∏

i=1

|di |
∏

j=1

�

λp(di, j = w | D) + (1−λ)
K
∑

k=1

p(zi, j = k | yi, j = 1,Θ,Π)p(di, j = w | Π,Θ)

�

=
N
∏

i=1

|di |
∏

j=1

�

λp(di, j = w | D) + (1−λ)
K
∑

k=1

p(zi, j = k | πi)p(di, j = w | θk)

�

when we substitute in our model estimates.
It is important to note here that p(zi, j = k | πi) is modeling the probability that zi, j = k given that

we are generating the word from the PLSA mixture, and thus it sums to 1 when summing from k = 1 up
to K rather than from k = 0 up to K .

6This isn’t strictly necessary, but it is done here to show the connection with the previous two models we discussed. For an
alternative derivation that uses only one set of latent variables Z , see this note: http://times.cs.uiuc.edu/course/
598f16/plsa-note.pdf.
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We thus have a log likelihood of

log p(D | Θ,Π) =
N
∑

i=1

|di |
∑

j=1

log

¨

λp(di, j = w | D) + (1−λ)
K
∑

k=1

p(zi, j = k | πi)p(di, j = w | θk)

«

where we can observe again the problematic summation occurring within the logarithm. We thus turn
to EM again for finding the maximum likelihood estimates for the model parameters Θ and Π.

E-step: Our main computation in the E-step is to estimate the joint distribution over the latent variables
Y and Z given the observations D and our current model parameters Θ(n) and Π(n).

First, we can observe that

p(yi, j = `, zi, j = k | D,Θ(n),Π(n)) = p(yi, j = ` | D,Θ(n),Π(n))p(zi, j = k | yi, j = `, D,Θn,Π(n))

and thus we can break this problem down into estimating two distributions: qy and qz|y for the
first and second term, respectively.

Focusing on the first term, and noting that since yi, j is binary random variable we can focus on
only one specific case, we have

p(yi, j = 1 | D,Θ(n),Π(n)) = p(yi, j = 1 | di, j = w,Θ(n),πi)

based on our independence assumptions, and

=
p(di, j = w | yi, j = 1,Θ(n),π(n)i )p(yi, j = 1 | Θ(n),π(n)i )

p(di, j = w | Θ(n),π(n)i )

by Bayes’ rule. Substituting in our model distributions, we have

=
(1−λ)

∑K
k=1 p(zi, j = k | π(n)i )p(w | θk)

λp(w | D) + (1−λ)
∑K

k=1 p(zi, j = k | π(n)i )p(w | θk)

and we can then set qy(yi, j = 1) = p(yi, j = 1 | D,Θ(n),Π(n)).7

Let’s now focus on the second term. We know that p(zi, j = 0 | yi, j = 0,Θ(n),Π(n)) = 1 by our model
definition, so we only need to concern ourselves with estimating p(zi, j = k | yi, j = 1,Θ(n),Π(n)).
Notice, however, that if yi, j = 1 then we know for certain that we are sampling from the PLSA
mixture (and thus p(zi, j = 0 | yi, j = 1,Θ(n),Π(n)) = 0), so we will end up with the exact same
estimate for qz|y as we had for q in the PLSA derivation. Specifically, we have, for k > 0,

p(zi, j = k | yi, j = 1,Θ(n),Π(n)) =
p(zi, j = k | π(n)i )p(wi, j | θ

(n)
k )

∑K
k′=1 p(zi, j = k′ | π(n)i )p(wi, j | θ

(n)
k′ )

and we simply let qz|y(zi, j = k) = p(zi, j = k | yi, j = 1,Θ(n),Π(n)).

7Notice the similarity of this formula to that we discovered in the E-step for the feedback model. We’ve simply replaced
p(w | θF ) with the marginal probability of generating a word w from the PLSA mixture model.
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M-step: We now need to re-estimate the parameters for our model Θ(n+1) and Π(n+1) using the distri-
butions qy and qz|y that we estimated in the E-step. We again will take an “expected counts” view.
Let nd,k be the number of times we expect to see a word in document d assigned to topic k from
the PLSA mixture model, and let nw,k be the number of times we expect to see a specific word
type w assigned to topic k from the PLSA mixture model.

We have
nd,k =

∑

w∈d

c(w, d)qy(yd,w = 1)qz|y(zd,w = k)

and
nw,k =

∑

d∈D

c(w, d)qy(yd,w = 1)qz|y(zd,w = k).

Let’s look at the product qy(yd,w = 1)qz|y(zd,w = k). We see that

qy(yd,w = 1)qz|y(zd,w = k) =

 

(1−λ)
∑K

k′=1 p(zd,w = k′ | π(n)d )p(w | θ
(n)
k′ )

λp(w | D) + (1−λ)
∑K

k′=1 p(zd,w = k′ | π(n)d )p(w | θ
(n)
k′ )

!

×

 

p(zd,w = k | π(n)d )p(w | θ
(n)
k )

∑K
k′=1 p(zd,w = k′ | π(n)d )p(w | θ

(n)
k′ )

!

=
(1−λ)p(zd,w = k | π(n)d )p(w | θ

(n)
k )

λp(w | D) + (1−λ)
∑K

k′=1 p(zd,w = k′ | π(n)d )p(w | θ
(n)
k′ )

which can be used to simplify the computation of the expected counts8.

Finally, we can normalize the expected counts to come up with the new estimates of our model’s
parameters. Specifically,

p(z = k | π(n+1)
d ) =

nd,k
∑K

k′=1 nd,k′
=

∑

w∈d c(w, d)qy(yd,w = 1)qz|y(zd,w = k)
∑K

k′=1

∑

w∈d c(w, d)qy(yd,w = 1)qz|y(zd,w = k′)

and

p(w | θ (n+1)
k ) =

nw,k
∑

w′∈V nw′,k
=

∑

d∈D c(w, d)qy(yd,w = 1)qz|y(zd,w = k)
∑

w′∈V

∑

d∈D c(w′, d)qy(yd,w′ = 1)qz|y(zd,w′ = k)
.
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